Satellites reveal Earth's seasonally shifting dust emission sources
Autor: | Adrian Chappell, Nicholas P. Webb, Mark Hennen, Kerstin Schepanski, Philippe Ciais, Yves Balkanski, Charles S. Zender, Ina Tegen, Zhenzhong Zeng, Daniel Tong, Barry Baker, Marie Ekström, Matthew Baddock, Frank D. Eckardt, Tarek Kandakji, Jeffrey A. Lee, Mohamad Nobakht, Johanna von Holdt, John F. Leys |
---|---|
Přispěvatelé: | Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: |
Albedo
Vegetation Environmental Engineering Dust emission point source Radiative forcing Dust model Ocean productivity Pollution Dust emission MODIS [SDU]Sciences of the Universe [physics] 500 Naturwissenschaften und Mathematik::550 Geowissenschaften Geologie::550 Geowissenschaften Environmental Chemistry Waste Management and Disposal |
Zdroj: | Science of the Total Environment Science of the Total Environment, 2023, 883, pp.163452. ⟨10.1016/j.scitotenv.2023.163452⟩ |
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2023.163452⟩ |
Popis: | Establishing mineral dust impacts on Earth's systems requires numerical models of the dust cycle. Differences between dust optical depth (DOD) measurements and modelling the cycle of dust emission, atmospheric transport, and deposition of dust indicate large model uncertainty due partially to unrealistic model assumptions about dust emission frequency. Calibrating dust cycle models to DOD measurements typically in North Africa, are routinely used to reduce dust model magnitude. This calibration forces modelled dust emissions to match atmospheric DOD but may hide the correct magnitude and frequency of dust emission events at source, compensating biases in other modelled processes of the dust cycle. Therefore, it is essential to improve physically based dust emission modules. Here we use a global collation of satellite observations from previous studies of dust emission point source (DPS) dichotomous frequency data. We show that these DPS data have little-to-no relation with MODIS DOD frequency. We calibrate the albedo-based dust emission model using the frequency distribution of those DPS data. The global dust emission uncertainty constrained by DPS data (±3.8 kg m−2 y−1) provides a benchmark for dust emission model development. Our calibrated model results reveal much less global dust emission (29.1 ± 14.9 Tg y−1) than previous estimates, and show seasonally shifting dust emission predominance within and between hemispheres, as opposed to a persistent North African dust emission primacy widely interpreted from DOD measurements. Earth's largest dust emissions, proceed seasonally from East Asian deserts in boreal spring, to Middle Eastern and North African deserts in boreal summer and then Australian shrublands in boreal autumn-winter. This new analysis of dust emissions, from global sources of varying geochemical properties, have far-reaching implications for current and future dust-climate effects. For more reliable coupled representation of dust-climate projections, our findings suggest the need to re-evaluate dust cycle modelling and benefit from the albedo-based parameterisation. |
Databáze: | OpenAIRE |
Externí odkaz: |