The Shah-Ali-Beiglou Zn-Pb-Cu (-Ag) Deposit, Iran: An Example of Intermediate Sulfidation Epithermal Type Mineralization

Autor: Mohsen Moayyed, Sajjad Maghfouri, Khadijeh Mikaeili, Mohammad Reza Hosseinzadeh
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Minerals; Volume 8; Issue 4; Pages: 148
Minerals, Vol 8, Iss 4, p 148 (2018)
ISSN: 2075-163X
DOI: 10.3390/min8040148
Popis: The Shah-Ali-Beiglou epithermal base metal-silver deposit is located in the Tarom-Hashjin metallogenic province (THMP) in northwestern Iran. This deposit is hosted by quartz monzonite dikes of Oligocene age and surrounded by andesite to trachyandesite volcanic and volcaniclastic rocks of Eocene age. The subvolcanic rocks in the study area vary in composition from quartz-monzonite to monzonite and have metaluminous, calc-alkaline to shoshonitic affinity. These rocks have I-type geochemical characteristic and are related to post-collisional tectonic setting. The mineralization occurs as NE-SW and E-W-trending brecciated veins controlled by strike-slip and normal faults, which are associated to the Late Oligocene compressional regime. The mineral paragenesis of the vein mineralization is subdivided into pre-ore stage, ore stage, post-ore stage, and supergene stage. Pre-ore stage is dominated by quartz, sericite, and subhedral to anhedral pyrite as disseminated form. Ore-stage is represented by quartz, sphalerite (from 0.1 mol % to 4 mol % FeS), galena, chalcopyrite, tetrahedrite-tennantite, minor seligmannite and enargite, as vein-veinlet, cement and clast breccias. Post-ore stage is defined by deposition of quartz and carbonate along with minor barite, and supergene stage is characterized by bornite, chalcocite, covellite, hematite, goethite, and jarosite. The ore mineralization is associated with the silicic alteration. The styles of alteration are silicic, carbonate, sericitic, chloritic, and propylitic. Fluid inclusions in sphalerite have a wide range of salinities between 0.35 wt % and 21.4 wt % NaCl equivalent and homogenization temperatures range from 123 to 320 °C. The isotopic values of sulfides vary from 2.8‰ to 6.7‰ suggesting a magmatic source for the sulfur. In the present study, based on geological setting, alteration style of the host and wall rocks, main textures, mineral assemblages, composition of ore minerals, and structural features, it is suggested that the mineralization in the Shah-Ali-Beiglou is similar to intermediate-sulfidation style of epithermal deposits.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje