Suppression of oscillations by Levy noise

Autor: Olemskoi, A.I., Borysov, S.S., Shuda, I.A.
Rok vydání: 2009
Předmět:
Zdroj: Ukrainian Journal of Physics; Vol. 56 No. 3 (2011); 287
Український фізичний журнал; Том 56 № 3 (2011); 287
ISSN: 2071-0194
2071-0186
DOI: 10.48550/arxiv.0910.2018
Popis: We find analytical solution of pair of stochastic equations with arbitrary forces and multiplicative L\'evy noises in a steady-state nonequilibrium case. This solution shows that L\'evy flights suppress always a quasi-periodical motion related to the limit cycle. We prove that difference between stochastic systems driven by L\'evy and Gaussian noises is that the L\'evy variation $\Delta L\sim(\Delta t)^{1/\alpha}$ with the exponent $\alpha
Comment: 18 pages, 1 figure. Submitted to Fluctuation and Noise Letters
Databáze: OpenAIRE