Mechanisms of the negative inotropic effects of sphingosine-1-phosphate on adult mouse ventricular myocytes
Autor: | Jason H. Haga, Colleen S. Kondo, Wayne R. Giles, Lee K. Landeen, Betty S. Hu, Dorothy A. Dederko, Nakon Aroonsakool |
---|---|
Rok vydání: | 2008 |
Předmět: |
medicine.medical_specialty
Calcium Channels L-Type Physiology G protein Heart Ventricles Action Potentials chemistry.chemical_element GTP-Binding Protein alpha Subunits Gi-Go In Vitro Techniques Biology Calcium Receptors G-Protein-Coupled Contractility Mice chemistry.chemical_compound Sphingosine Physiology (medical) Internal medicine medicine Animals Myocyte Myocytes Cardiac Potassium Channels Inwardly Rectifying Tertiapin Models Statistical Voltage-dependent calcium channel Reverse Transcriptase Polymerase Chain Reaction Calcium channel Myocardial Contraction Potassium channel Mice Inbred C57BL Receptors Lysosphingolipid Endocrinology chemistry Depression Chemical Lysophospholipids Cardiology and Cardiovascular Medicine Signal Transduction |
Zdroj: | American Journal of Physiology-Heart and Circulatory Physiology. 294:H736-H749 |
ISSN: | 1522-1539 0363-6135 |
DOI: | 10.1152/ajpheart.00316.2007 |
Popis: | Sphingosine-1-phosphate (S1P) induces a transient bradycardia in mammalian hearts through activation of an inwardly rectifying K+ current ( IKACh) in the atrium that shortens action potential duration (APD) in the atrium. We have investigated probable mechanisms and receptor-subtype specificity for S1P-induced negative inotropy in isolated adult mouse ventricular myocytes. Activation of S1P receptors by S1P (100 nM) reduced cell shortening by ∼25% (vs. untreated controls) in field-stimulated myocytes. S1P1 was shown to be involved by using the S1P1-selective agonist SEW2871 on myocytes isolated from S1P3-null mice. However, in these myocytes, S1P3 can modulate a somewhat similar negative inotropy, as judged by the effects of the S1P1 antagonist VPC23019 . Since S1P1 activates Gi exclusively, whereas S1P3 activates both Gi and Gq, these results strongly implicate the involvement of mainly Gi. Additional experiments using the IKACh blocker tertiapin demonstrated that IKACh can contribute to the negative inotropy following S1P activation of S1P1 (perhaps through Giβγ subunits). Mathematical modeling of the effects of S1P on APD in the mouse ventricle suggests that shortening of APD (e.g., as induced by IKACh) can reduce L-type calcium current and thus can decrease the intracellular Ca2+ concentration ([Ca2+]i) transient. Both effects can contribute to the observed negative inotropic effects of S1P. In summary, these findings suggest that the negative inotropy observed in S1P-treated adult mouse ventricular myocytes may consist of two distinctive components: 1) one pathway that acts via Gi to reduce L-type calcium channel current, blunt calcium-induced calcium release, and decrease [Ca2+]i; and 2) a second pathway that acts via Gi to activate IKACh and reduce APD. This decrease in APD is expected to decrease Ca2+ influx and reduce [Ca2+]i and myocyte contractility. |
Databáze: | OpenAIRE |
Externí odkaz: |