Renormalization towers and their forcing
Autor: | Michał Misiurewicz, Alexander Blokh |
---|---|
Rok vydání: | 2019 |
Předmět: |
Applied Mathematics
General Mathematics Block (permutation group theory) Order (ring theory) Natural number Dynamical Systems (math.DS) Condensed Matter::Mesoscopic Systems and Quantum Hall Effect Tower (mathematics) Cyclic permutation Combinatorics Renormalization Primary 37E15 Secondary 37E05 37E20 FOS: Mathematics Partition (number theory) Interval (graph theory) Mathematics - Dynamical Systems Mathematics |
Zdroj: | Transactions of the American Mathematical Society. 372:8933-8953 |
ISSN: | 1088-6850 0002-9947 |
DOI: | 10.1090/tran/7928 |
Popis: | A cyclic permutation $\pi:\{1, \dots, N\}\to \{1, \dots, N\}$ has a \emph{block structure} if there is a partition of $\{1, \dots, N\}$ into $k\notin\{1,N\}$ segments (\emph{blocks}) permuted by $\pi$; call $k$ the \emph{period} of this block structure. Let $p_1 Comment: 19 pages, 5 figures |
Databáze: | OpenAIRE |
Externí odkaz: |