Normal form for travelling kinks in discrete Klein–Gordon lattices

Autor: Dmitry E. Pelinovsky, Gérard Iooss
Přispěvatelé: Institut Non Linéaire de Nice Sophia-Antipolis (INLN), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics and Statistics [Hamilton], McMaster University [Hamilton, Ontario]
Jazyk: angličtina
Rok vydání: 2006
Předmět:
Zdroj: Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena, Elsevier, 2006, 216, pp.327-345. ⟨10.1016/j.physd.2006.03.012⟩
ISSN: 0167-2789
DOI: 10.1016/j.physd.2006.03.012⟩
Popis: We study travelling kinks in the spatial discretizations of the nonlinear Klein–Gordon equation, which include the discrete ϕ 4 lattice and the discrete sine-Gordon lattice. The differential advance-delay equation for travelling kinks is reduced to the normal form, a scalar fourth-order differential equation, near the quadruple zero eigenvalue. We show numerically the non-existence of monotonic kinks (heteroclinic orbits between adjacent equilibrium points) in the fourth-order equation. Making generic assumptions on the reduced fourth-order equation, we prove the persistence of bounded solutions (heteroclinic connections between periodic solutions near adjacent equilibrium points) in the full differential advance-delay equation with the technique of centre manifold reduction. Existence of multiple kinks in the discrete sine-Gordon equation is discussed in connection to recent numerical results of Aigner et al. [A.A. Aigner, A.R. Champneys, V.M. Rothos, A new barrier to the existence of moving kinks in Frenkel–Kontorova lattices, Physica D 186 (2003) 148–170] and results of our normal form analysis.
Databáze: OpenAIRE