Bayesian Analysis of a Future Beta Decay Experiment's Sensitivity to Neutrino Mass Scale and Ordering

Autor: Sebastian Böser, Gray Rybka, M. Guigue, Walter C. Pettus, R. Cervantes, Malachi Schram, M. Grando, T. Wendler, Mathew Thomas, Kareem Kazkaz, B. H. LaRoque, James Nikkel, M. Ottiger, B.A. VanDevender, Benjamin Monreal, J. Johnston, M. Betancourt, L. Saldaña, R. G. H. Robertson, X. Huyan, Joseph A. Formaggio, Z. Bogorad, A. Ashtari Esfahani, R. Mohiuddin, V. Sibille, L. de Viveiros, E. Zayas, A. Lindman, Martin Fertl, N. Buzinsky, L. Tvrznikova, L. Gladstone, J. Hartse, A. Ziegler, Thomas Thümmler, P. T. Surukuchi, N. S. Oblath, A. B. Telles, C. Claessens, K. M. Heeger, T. E. Weiss, Y. H. Sun, P. L. Slocum, E. Novitski, Jonathan R. Tedeschi, A. M. Jones
Přispěvatelé: Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Semileptonic decay
data analysis method
Particle physics
Bayesian probability
FOS: Physical sciences
[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]
Bayesian inference
Bayesian
01 natural sciences
Measure (mathematics)
statistics: Bayesian
mass: scale
High Energy Physics - Phenomenology (hep-ph)
0103 physical sciences
Calibration
neutrino: mass
Sensitivity (control systems)
Nuclear Experiment (nucl-ex)
010306 general physics
Nuclear Experiment
Physics
010308 nuclear & particles physics
Electroweak Interaction
Probability and statistics
semileptonic decay
calibration
sensitivity
neutrino: nuclear reactor
High Energy Physics - Phenomenology
mass: calibration
[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]
Physics - Data Analysis
Statistics and Probability

spectral
High Energy Physics::Experiment
Neutrino
Data Analysis
Statistics and Probability (physics.data-an)

[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis
Statistics and Probability [physics.data-an]

Symmetries
Zdroj: Physical Review C
Physical Review C, American Physical Society, 2021, 103 (6), pp.065501. ⟨10.1103/PhysRevC.103.065501⟩
ISSN: 2469-9985
2469-9993
DOI: 10.1103/PhysRevC.103.065501⟩
Popis: Bayesian modeling techniques enable sensitivity analyses that incorporate detailed expectations regarding future experiments. A model-based approach also allows one to evaluate inferences and predicted outcomes, by calibrating (or measuring) the consequences incurred when certain results are reported. We present procedures for calibrating predictions of an experiment's sensitivity to both continuous and discrete parameters. Using these procedures and a new Bayesian model of the $\beta$-decay spectrum, we assess a high-precision $\beta$-decay experiment's sensitivity to the neutrino mass scale and ordering, for one assumed design scenario. We find that such an experiment could measure the electron-weighted neutrino mass within $\sim40\,$meV after 1 year (90$\%$ credibility). Neutrino masses $>500\,$meV could be measured within $\approx5\,$meV. Using only $\beta$-decay and external reactor neutrino data, we find that next-generation $\beta$-decay experiments could potentially constrain the mass ordering using a two-neutrino spectral model analysis. By calibrating mass ordering results, we identify reporting criteria that can be tuned to suppress false ordering claims. In some cases, a two-neutrino analysis can reveal that the mass ordering is inverted, an unobtainable result for the traditional one-neutrino analysis approach.
Comment: 17 pages, 10 figures
Databáze: OpenAIRE