Reduction for $SL(3)$ pre-buildings
Autor: | Pranav Pandit, Ludmil Katzarkov, Carlos Simpson |
---|---|
Přispěvatelé: | Département de Mathématiques [Nice], Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Pure mathematics
Riemann surface Mathematics::History and Overview [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] Harmonic map Geometric Topology (math.GT) Reduction (complexity) Spectral curve Mathematics - Algebraic Geometry Mathematics - Geometric Topology symbols.namesake Mathematics - Classical Analysis and ODEs Simply connected space Core (graph theory) symbols Classical Analysis and ODEs (math.CA) FOS: Mathematics Differential (infinitesimal) Algebraic Geometry (math.AG) Mathematics |
Zdroj: | Proc.Symp.Pure Math. String Math 2016 String Math 2016, Jun 2016, Paris, France. pp.207-227, ⟨10.1090/pspum/098/01724⟩ |
DOI: | 10.1090/pspum/098/01724⟩ |
Popis: | International audience; Given an $SL(3)$ spectral curve over a simply connected Riemann surface, wedescribe in detail the reduction steps necessary to construct the core of apre-building with versal harmonic map whose differential is given by thespectral curve. |
Databáze: | OpenAIRE |
Externí odkaz: |