Uniqueness of Equilibrium with Sufficiently Small Strains in Finite Elasticity

Autor: Daniel Spector, Scott J. Spector
Rok vydání: 2019
Předmět:
Zdroj: Archive for Rational Mechanics and Analysis. 233:409-449
ISSN: 1432-0673
0003-9527
DOI: 10.1007/s00205-019-01360-1
Popis: The uniqueness of equilibrium for a compressible, hyperelastic body subject to dead-load boundary conditions is considered. It is shown, for both the displacement and mixed problems, that there cannot be two solutions of the equilibrium equations of Finite (Nonlinear) Elasticity whose nonlinear strains are uniformly close to each other. This result is analogous to the result of Fritz John (Comm. Pure Appl. Math. 25, 617-634, 1972) who proved that, for the displacement problem, there is a most one equilibrium solution with uniformly small strains. The proof in this manuscript utilizes Geometric Rigidity; a new straightforward extension of the Fefferman-Stein inequality to bounded domains; and, an appropriate adaptation, for Elasticity, of a result from the Calculus of Variations. Specifically, it is herein shown that the uniform positivity of the second variation of the energy at an equilibrium solution implies that this mapping is a local minimizer of the energy among deformations whose gradient is sufficiently close, in $BMO\cap\, L^1$, to the gradient of the equilibrium solution.
39 pages
Databáze: OpenAIRE