Effects of Boundary Conditions and Operating Parameters on Temperature Distribution during the Friction Stir Welding Process

Autor: Amina Mataoui, Mouloud Aissani, Hao Yue, Moustafa Boukraa, Nadhir Lebaal, N. Tal Ighil, David Bassir
Přispěvatelé: Centre de Mathématiques et de Leurs Applications (CMLA), École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS), IRAMAT - Laboratoire Métallurgies et Cultures (IRAMAT - LMC), Institut de Recherches sur les Archéomatériaux (IRAMAT), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Montaigne-Université de Technologie de Belfort-Montbeliard (UTBM)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Montaigne-Université de Technologie de Belfort-Montbeliard (UTBM)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: IOP Conference Series: Materials Science and Engineering
IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2021, 1140 (1), pp.012050. ⟨10.1088/1757-899x/1140/1/012050⟩
ISSN: 1757-8981
1757-899X
DOI: 10.1088/1757-899x/1140/1/012050⟩
Popis: This work deals with a numerical simulation of the friction stir welding FSW process of alloy material AA2195-T8. A 3D transient thermal model for simulating the heat transfer phenomena in the welding phase is applied. In this model, the FSW tool is considered as a circular heat source moving in a rectangular plate having a cooling surface and subjected to non-uniform and non-homogeneous boundary conditions. The thermal problem is solved using the finite element method as part of a Lagrangian formulation. The obtained results allow us to determine the maximum value of the temperature in the Nugget zone of the welded joint. During this process, the thermal cycle and the temperature distribution were determined for different values of the welding process parameters. The obtained numerical results are in good agreement with the one available in the literature.
Databáze: OpenAIRE