A new autonomous data transmission reduction method for wireless sensors networks

Autor: Gaby Bou Tayeh, Jacques Demerjian, Abdallah Makhoul, David Laiymani
Přispěvatelé: Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Lebanese University [Beirut] (LU)
Rok vydání: 2018
Předmět:
Computer science
business.industry
Real-time computing
020206 networking & telecommunications
[INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE]
02 engineering and technology
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
7. Clean energy
[INFO.INFO-IU]Computer Science [cs]/Ubiquitous Computing
Reduction (complexity)
[INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR]
Transmission (telecommunications)
[INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA]
020204 information systems
Sensor node
0202 electrical engineering
electronic engineering
information engineering

Wireless
[INFO.INFO-ET]Computer Science [cs]/Emerging Technologies [cs.ET]
[INFO.INFO-DC]Computer Science [cs]/Distributed
Parallel
and Cluster Computing [cs.DC]

business
Wireless sensor network
Energy (signal processing)
Data transmission
Data reduction
Zdroj: MENACOMM
Middle East and North Africa COMMunications Conference
Middle East and North Africa COMMunications Conference, Apr 2018, Jounieh, Lebanon
DOI: 10.1109/menacomm.2018.8371030
Popis: International audience; The inherent limitation in energy resources and computational power for sensor nodes in a Wireless Sensor Network, poses the challenge of extending the lifetime of these networks. Since radio communication is the dominant energy consuming activity, most presented approaches focused on reducing the number of data transmitted to the central workstation. This can be achieved by deploying both on the workstation and the sensor node a synchronized prediction model capable of forecasting future values. Thus, enabling the sensor node to transmit only the values that surpasses a predefined error threshold. This mechanism offers a decrease in the cost of transmission energy for a price of an increase in the cost of computational energy. Therefore, finding the right trade­off between complexity and efficiency is very important to achieve optimal results. In this paper, we present a novel data reduction method that outperforms other state of the art data reduction approaches. We demonstrated the efficiency of our algorithm using simulation on real-world data sets collected at our laboratory. The obtained results show that our method was able to achieve a data suppression ratio ranging between 93.2% and 99.8%.
Databáze: OpenAIRE