Positive solutions for a class of nonlocal problems with possibly singular nonlinearity

Autor: Leszek Gasiński, João R. Santos Junior, Gaetano Siciliano
Rok vydání: 2022
Předmět:
Zdroj: Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
ISSN: 1661-7746
1661-7738
DOI: 10.1007/s11784-022-00982-5
Popis: We study a class of elliptic problems with homogeneous Dirichlet boundary condition and a nonlinear reaction term $f$ which is nonlocal depending on the $L^{p}$-norm of the unknown function. The nonlinearity $f$ can make the problem degenerate since it may even have multiple singularities in the nonlocal variable. We use fixed point arguments for an appropriately defined solution map to produce multiplicity of classical positive solutions with ordered norms.
Databáze: OpenAIRE