Inactivation of NKX6.3 in the stomach leads to abnormal expression of CDX2 and SOX2 required for gastric-to-intestinal transdifferentiation
Autor: | Jung Y Lee, Won Suh Choi, Yong K Park, Won Sang Park, Suk W Nam, Sung S Choi, Olga Kim, Jung H Yoon |
---|---|
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
Pathology Bone Morphogenetic Protein 4 0302 clinical medicine Risk Factors Metaplasia CDX2 Transcription Factor Promoter Regions Genetic CDX2 Stomach Transdifferentiation Intestinal metaplasia Gene Expression Regulation Neoplastic Cell Transformation Neoplastic Phenotype medicine.anatomical_structure Area Under Curve 030220 oncology & carcinogenesis embryonic structures Female medicine.symptom medicine.medical_specialty animal structures Biology Transfection Risk Assessment Helicobacter Infections Pathology and Forensic Medicine 03 medical and health sciences Bacterial Proteins Stomach Neoplasms Cell Line Tumor medicine Gastric mucosa Animals Humans Gene silencing Genetic Predisposition to Disease Gene Silencing RNA Messenger Homeodomain Proteins Antigens Bacterial Binding Sites Helicobacter pylori SOXB1 Transcription Factors Proteins medicine.disease biology.organism_classification digestive system diseases Mice Inbred C57BL Disease Models Animal 030104 developmental biology ROC Curve Gastric Mucosa Cell Transdifferentiation Precancerous Conditions Transcription Factors |
Zdroj: | Modern Pathology. 29:194-208 |
ISSN: | 0893-3952 |
DOI: | 10.1038/modpathol.2015.150 |
Popis: | Intestinal metaplasia in gastric mucosa is considered a preneoplastic lesion that progresses to gastric cancer. However, the molecular networks underlying this lesion formation are largely unknown. NKX6.3 is known to be an important regulator in gastric mucosal epithelial differentiation. In this study, we characterized the effects of NKX6.3 that may contribute to gastric intestinal metaplasia. NKX6.3 expression was significantly reduced in gastric mucosae with intestinal metaplasia. The mRNA expression levels of both NKX6.3 and CDX2 predicted the intestinal metaplasia risk, with an area under the receiver operating characteristic curve value of 0.9414 and 0.9971, respectively. Notably, the NKX6.3 expression level was positively and inversely correlated with SOX2 and CDX2, respectively. In stable AGS(NKX6.3) and MKN1(NKX6.3) cells, NKX6.3 regulated the expression of CDX2 and SOX2 by directly binding to the promoter regions of both genes. Nuclear NKX6.3 expression was detected only in gastric epithelial cells without intestinal metaplasia. Furthermore, NKX6.3-induced TWSG1 bound to BMP4 and inhibited BMP4-binding activity to BMPR-II. These data suggest that NKX6.3 might function as a master regulator of gastric differentiation by affecting SOX2 and CDX2 expression and the NKX6.3 inactivation may result in intestinal metaplasia in gastric epithelial cells. |
Databáze: | OpenAIRE |
Externí odkaz: |