Universality of Noise Reinforced Brownian Motions

Autor: Jean Bertoin
Přispěvatelé: Bertoin, Jean, University of Zurich, Vares, M E, Fernandez, R, Fontes, L R, Newman, Charles M
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Progress in Probability ISBN: 9783030607531
Popis: A noise reinforced Brownian motion is a centered Gaussian process $\hat B=(\hat B(t))_{t\geq 0}$ with covariance $E(\hat B(t)\hat B(s))=(1-2p)^{-1}t^ps^{1-p} \quad \text{for} \quad 0\leq s \leq t,$ where $p\in(0,1/2)$ is a reinforcement parameter. Our main purpose is to establish a version of Donsker's invariance principle for a large family of step-reinforced random walks in the diffusive regime, and more specifically, to show that $\hat B$ arises as the universal scaling limit of the former. This extends known results on the asymptotic behavior of the so-called elephant random walk.
Comment: An unnecessary assumption for the validity of the invariance principle which was made in the first draft has been removed (15 pages)
Databáze: OpenAIRE