Theoretical and experimental study of a thermal damper based on a CNT/PCM composite structure for transient electronic cooling
Autor: | Stéphane Lips, Vincent Remondière, Sandrine Lhostis, Nathalie Rolland, Malek Zegaoui, Christophe Kinkelin, Jean Dijon, Frédéric Lefèvre, Paul-Alain Rolland, Yann Kaplan, Emmanuel Ollier, Brigitte Descouts, Ulrich Soupremanien, Hélène Le Poche |
---|---|
Přispěvatelé: | Centre d'Energétique et de Thermique de Lyon (CETHIL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), STMicroelectronics [Crolles] (ST-CROLLES), Kaplan Energy, Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Materials science
020209 energy Thermal resistance Energy Engineering and Power Technology 02 engineering and technology Thermal diffusivity 7. Clean energy Thermal bridge 0202 electrical engineering electronic engineering information engineering vertically aligned carbon nanotubes interfacial thermal resistance Composite material Thermal contact conductance Renewable Energy Sustainability and the Environment business.industry thermal energy storage Structural engineering 021001 nanoscience & nanotechnology Thermal conduction Thermal transmittance Fuel Technology Nuclear Energy and Engineering transient electronic cooling Heat transfer [PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph] 0210 nano-technology business Thermal break Phase change material |
Zdroj: | Energy Conversion and Management Energy Conversion and Management, Elsevier, 2017, 142, pp.257-271. ⟨10.1016/j.enconman.2017.03.034⟩ Energy Conversion and Management, 2017, 142, pp.257-271. ⟨10.1016/j.enconman.2017.03.034⟩ |
ISSN: | 0196-8904 |
Popis: | International audience; The present study focuses on a thermal damper that aims at smoothing the temperature peaks experienced by electronic components during transient solicitations. It consists of a silicon casing containing a densified or undensified carbon nanotube (CNT) array - linking directly both sides of the system - filled with phase change material (PCM). Theoretical consideration enables to define the concept of ideal thermal damper in order to study the foreseeable performance of this kind of system. Its thermal effectiveness can be predicted by means of two non-dimensional numbers, linked to the thermal capacity of the system and to the latent heat of the PCM. A numerical model shows that the behavior of a non-ideal thermal damper can differ from that of an ideal thermal damper: it is mostly affected by the thermal resistance at the interface between the silicon and the \CNT\ and the temperature glide during the \PCM\ phase change. To complete the study, prototypes of thermal dampers are experimentally characterized, in terms of heat storage and heat conduction performance. An estimation method of the total apparent thermal capacity of the tested sample is developed in order to quantify its latent heat storage capacity. The latent energy storage density is 1.6 J cm−2 for the best sample and is observed to be preserved after 850 thermal cycles. The total thermal resistance of the thermal damper is estimated by means of a laser flash test and a simple model of the sample. Sensitivity analyses show that the main thermal resistances are located at the interfaces between silicon and CNT. |
Databáze: | OpenAIRE |
Externí odkaz: |