Travelling waves of density for a fourth-gradient model of fluids
Autor: | Henri Gouin, Giuseppe Saccomandi |
---|---|
Přispěvatelé: | Institut universitaire des systèmes thermiques industriels (IUSTI), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Ingegneria Industriale, Università degli Studi di Perugia (UNIPG), Università degli Studi di Perugia = University of Perugia (UNIPG), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Extended Fisher–Kolmogorov equation
Extended Fisher-Kolmogorov equation [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] FOS: Physical sciences General Physics and Astronomy Phases transition Condensed Matter - Soft Condensed Matter 01 natural sciences 47.35-i 47-57.-s 64.60.De 64.70.F 010305 fluids & plasmas Physics::Fluid Dynamics symbols.namesake Physics and Astronomy (all) Critical point (thermodynamics) 0103 physical sciences Traveling wave Taylor series General Materials Science [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] Gradient theories 0101 mathematics Travelling waves [PHYS.MECA.VIBR]Physics [physics]/Mechanics [physics]/Vibrations [physics.class-ph] Physics Internal energy Fluid Dynamics (physics.flu-dyn) Lagrangian methods State (functional analysis) Mechanics Physics - Fluid Dynamics Pulse (physics) 010101 applied mathematics Critical opalescence Fourth order Capillary fluids Mechanics of Materials symbols Soft Condensed Matter (cond-mat.soft) Materials Science (all) [PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] |
Zdroj: | Continuum Mechanics and Thermodynamics Continuum Mechanics and Thermodynamics, Springer Verlag, 2016, 28 (5), pp.1511-1523. ⟨10.1007/s00161-016-0492-3⟩ Continuum Mechanics and Thermodynamics, 2016, 28 (5), pp.1511-1523. ⟨10.1007/s00161-016-0492-3⟩ |
ISSN: | 0935-1175 1432-0959 |
DOI: | 10.1007/s00161-016-0492-3⟩ |
Popis: | In mean-field theory, the non-local state of fluid molecules can be taken into account using a statistical method. The molecular model combined with a density expansion in Taylor series of the fourth order yields an internal energy value relevant to the fourth-gradient model, and the equation of isother-mal motions takes then density's spatial derivatives into account for waves travelling in both liquid and vapour phases. At equilibrium, the equation of the density profile across interfaces is more precise than the Cahn and Hilliard equation, and near the fluid's critical-point, the density profile verifies an Extended Fisher-Kolmogorov equation, allowing kinks, which converges towards the Cahn-Hillard equation when approaching the critical point. Nonetheless, we also get pulse waves oscillating and generating critical opalescence. Some travelling waves of density near a fluid critical-point |
Databáze: | OpenAIRE |
Externí odkaz: |