Travelling waves of density for a fourth-gradient model of fluids

Autor: Henri Gouin, Giuseppe Saccomandi
Přispěvatelé: Institut universitaire des systèmes thermiques industriels (IUSTI), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Ingegneria Industriale, Università degli Studi di Perugia (UNIPG), Università degli Studi di Perugia = University of Perugia (UNIPG), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Extended Fisher–Kolmogorov equation
Extended Fisher-Kolmogorov equation
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
FOS: Physical sciences
General Physics and Astronomy
Phases transition
Condensed Matter - Soft Condensed Matter
01 natural sciences
47.35-i
47-57.-s
64.60.De
64.70.F

010305 fluids & plasmas
Physics::Fluid Dynamics
symbols.namesake
Physics and Astronomy (all)
Critical point (thermodynamics)
0103 physical sciences
Traveling wave
Taylor series
General Materials Science
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
Gradient theories
0101 mathematics
Travelling waves
[PHYS.MECA.VIBR]Physics [physics]/Mechanics [physics]/Vibrations [physics.class-ph]
Physics
Internal energy
Fluid Dynamics (physics.flu-dyn)
Lagrangian methods
State (functional analysis)
Mechanics
Physics - Fluid Dynamics
Pulse (physics)
010101 applied mathematics
Critical opalescence
Fourth order
Capillary fluids
Mechanics of Materials
symbols
Soft Condensed Matter (cond-mat.soft)
Materials Science (all)
[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]
Zdroj: Continuum Mechanics and Thermodynamics
Continuum Mechanics and Thermodynamics, Springer Verlag, 2016, 28 (5), pp.1511-1523. ⟨10.1007/s00161-016-0492-3⟩
Continuum Mechanics and Thermodynamics, 2016, 28 (5), pp.1511-1523. ⟨10.1007/s00161-016-0492-3⟩
ISSN: 0935-1175
1432-0959
DOI: 10.1007/s00161-016-0492-3⟩
Popis: In mean-field theory, the non-local state of fluid molecules can be taken into account using a statistical method. The molecular model combined with a density expansion in Taylor series of the fourth order yields an internal energy value relevant to the fourth-gradient model, and the equation of isother-mal motions takes then density's spatial derivatives into account for waves travelling in both liquid and vapour phases. At equilibrium, the equation of the density profile across interfaces is more precise than the Cahn and Hilliard equation, and near the fluid's critical-point, the density profile verifies an Extended Fisher-Kolmogorov equation, allowing kinks, which converges towards the Cahn-Hillard equation when approaching the critical point. Nonetheless, we also get pulse waves oscillating and generating critical opalescence.
Some travelling waves of density near a fluid critical-point
Databáze: OpenAIRE