Performance study of fouling resistant novel ultrafiltration membranes based on the blends of poly (ether ether sulfone)/poly (vinyl pyrrolidone)/nano-titania for the separation of humic acid, dyes and biological macromolecular proteins from aqueous solutions

Autor: Ishani Singh, Jenet George, Isita Singh, Maheswari Purushothaman, Vinoth Kumar Vaidyanathan
Rok vydání: 2021
Předmět:
Zdroj: Journal of hazardous materials. 424
ISSN: 1873-3336
Popis: This study explains the use of a ultrafiltration membrane made of polyvinyl pyrrolidone (PVP) and poly(ether ether sulfone) (PEES)/Nano-titania (n-TiO2) for the separation of organic compounds. The results of the tests for porosity, water content, surface chemistry, membrane morphology, and contact angle demonstrated that the developed membranes have more hydrophilicity than PEES membranes due to the redundant hydrophilic nature of PVP and n-TiO2. The membrane pure water flux, which contains 5 wt% PVP and 1.5 wt% n-TiO2, was 312.76 Lm–2h–1, about three-fold higher than that of pristine membrane (95.71 Lm–2h–1). Employing bovine serum albumin as a model foulant, the fouling resistance of the PEES/PVP/n-TiO2 membrane was examined. According to the analysis of flux recovery ratio and irreversible resistance, modified membranes were less likely to foul, and the PEES/n-TiO2 membrane with 5% PVP addition was recommended as optimal. The fabricated membranes effectively removed more than 95% of various organic compounds such as humic acid, safranin O, egg albumin, pepsin, and trypsin from aqueous solution. Permeability of safranin O and humic acid of PEES/PVP/n-TiO2 membranes was about 118 Lm–2h–1 and 138 Lm–2h–1, respectively.
Databáze: OpenAIRE