Phase Engineering of Defective Copper Selenide toward Robust Lithium-Sulfur Batteries
Autor: | Dawei Yang, Mengyao Li, Xuejiao Zheng, Xu Han, Chaoqi Zhang, Jordi Jacas Biendicho, Jordi Llorca, Jiaao Wang, Hongchang Hao, Junshan Li, Graeme Henkelman, Jordi Arbiol, Joan Ramon Morante, David Mitlin, Shulei Chou, Andreu Cabot |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament d'Enginyeria Química, Universitat Politècnica de Catalunya. ENCORE - Energy Catalysis Process Reaction Engineering, Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), European Commission, China Scholarship Council, Generalitat de Catalunya, Welch Foundation, Texas Advanced Computing Center, Universidad Autónoma de Barcelona, Institución Catalana de Investigación y Estudios Avanzados |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | ACS nano. 16(7) |
ISSN: | 1936-086X |
Popis: | The shuttling of soluble lithium polysulfides (LiPS) and the sluggish Li-S conversion kinetics are two main barriers toward the practical application of lithium-sulfur batteries (LSBs). Herein, we propose the addition of copper selenide nanoparticles at the cathode to trap LiPS and accelerate the Li-S reaction kinetics. Using both computational and experimental results, we demonstrate the crystal phase and concentration of copper vacancies to control the electronic structure of the copper selenide, its affinity toward LiPS chemisorption, and its electrical conductivity. The adjustment of the defect density also allows for tuning the electrochemically active sites for the catalytic conversion of polysulfide. The optimized S/Cu1.8Se cathode efficiently promotes and stabilizes the sulfur electrochemistry, thus improving significantly the LSB performance, including an outstanding cyclability over 1000 cycles at 3 C with a capacity fading rate of just 0.029% per cycle, a superb rate capability up to 5 C, and a high areal capacity of 6.07 mAh cm-2 under high sulfur loading. Overall, the present work proposes a crystal phase and defect engineering strategy toward fast and durable sulfur electrochemistry, demonstrating great potential in developing practical LSBs. The authors thank the support from the projects ENE2016-77798-C4-3-R and NANOGEN (PID2020-116093RB-C43), funded by MCIN/AEI/10.13039/501100011033/and by “ERDF A way of making Europe”, by the “European Union”. D.Y., M.L., X.H., and C.Z. thank the China Scholarship Council for the scholarship support. ICN2 acknowledges the support from the Severo Ochoa Programme (MINECO, grant no. SEV-2017-0706). IREC and ICN2 are both funded by the CERCA Program/Generalitat de Catalunya. This project received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 823717-ESTEEM3. Calculations at UT Austin were supported by the Welch Foundation (F-1841) and the Texas Advanced Computing Center. Part of the present work has been performed in the framework of Universitat Autònoma de Barcelona Materials Science PhD program. J.L. is a Serra Húnter Fellow and is grateful to MICINN/FEDER RTI2018-093996-B-C31, GC 2017 SGR 128, and to the ICREA Academia program. |
Databáze: | OpenAIRE |
Externí odkaz: |