On the complexity of computing integral bases of function fields

Autor: Simon Abelard
Přispěvatelé: Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), David R. Cheriton School of Computer Science, University of Waterloo [Waterloo], This paper is a part of a project that has received funding by the French Agence de l'Innovation de Défense (DGA)., Boulier F., England M., Sadykov T.M., Vorozhtsov E.V.
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Algebraic function field
Computer Science - Symbolic Computation
FOS: Computer and information sciences
[INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC]
050101 languages & linguistics
Plane curve
[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]
02 engineering and technology
Symbolic Computation (cs.SC)
Commutative Algebra (math.AC)
Puiseux series
Mathematics - Algebraic Geometry
ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION
Polynomial matrices
0202 electrical engineering
electronic engineering
information engineering

FOS: Mathematics
0501 psychology and cognitive sciences
Linear algebra
Algebraic Geometry (math.AG)
Mathematics
Discrete mathematics
[INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC]
Irreducible polynomial
05 social sciences
Basis (universal algebra)
Function (mathematics)
Mathematics - Commutative Algebra
020201 artificial intelligence & image processing
[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
Monic polynomial
Zdroj: CASC 2020-Computer Algebra in Scientific Computing
CASC 2020-Computer Algebra in Scientific Computing, Sep 2020, Linz / Virtual, Austria. pp.42-62, ⟨10.1007/978-3-030-60026-6_3⟩
Computer Algebra in Scientific Computing ISBN: 9783030600259
CASC
DOI: 10.1007/978-3-030-60026-6_3⟩
Popis: Let $\mathcal{C}$ be a plane curve given by an equation $f(x,y)=0$ with $f\in K[x][y]$ a monic squarefree polynomial. We study the problem of computing an integral basis of the algebraic function field $K(\mathcal{C})$ and give new complexity bounds for three known algorithms dealing with this problem. For each algorithm, we study its subroutines and, when it is possible, we modify or replace them so as to take advantage of faster primitives. Then, we combine complexity results to derive an overall complexity estimate for each algorithm. In particular, we modify an algorithm due to B\"ohm et al. and achieve a quasi-optimal runtime.
Comment: Preliminary version
Databáze: OpenAIRE