A quantum route to the classical Lagrangian formalism

Autor: Giuseppe Marmo, Fabio Di Cosmo, Alberto Ibort, Florio M. Ciaglia, Alessandro Zampini, Luca Schiavone
Přispěvatelé: Ciaglia, F. M., Di Cosmo, F., Ibort, A., Marmo, G., Schiavone, L., Zampini, A.
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Popis: Using the recently developed groupoidal description of Schwinger's picture of Quantum Mechanics, a new approach to Dirac's fundamental question on the role of the Lagrangian in Quantum Mechanics is provided. It is shown that a function $\ell$ on the groupoid of configurations (or kinematical groupoid) of a quantum system determines a state on the von Neumann algebra of the histories of the system. This function, which we call {\itshape q-Lagrangian}, can be described in terms of a new function $\mathcal{L}$ on the Lie algebroid of the theory. When the kinematical groupoid is the pair groupoid of a smooth manifold $M$, the quadratic expansion of $\mathcal{L}$ will reproduce the standard Lagrangians on $TM$ used to describe the classical dynamics of particles.
12 pages
Databáze: OpenAIRE