DaGO-Fun: tool for Gene Ontology-based functional analysis using term information content measures
Autor: | Gaston K. Mazandu, Nicola Mulder |
---|---|
Přispěvatelé: | Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences |
Rok vydání: | 2013 |
Předmět: |
Computer science
Context (language use) Similarity measure Semantics Biochemistry Annotation Semantic similarity Structural Biology Databases Genetic Similarity (psychology) Cluster Analysis Ontology (GO) data Cluster analysis Molecular Biology Information retrieval Applied Mathematics Computational Biology Proteins Molecular Sequence Annotation Computer Science Applications protein analyses Gene Ontology Genes DaGO-Fun UniProt Software |
Zdroj: | BMC Bioinformatics |
ISSN: | 1471-2105 |
Popis: | The use of Gene Ontology (GO) data in protein analyses have largely contributed to the improved outcomes of these analyses. Several GO semantic similarity measures have been proposed in recent years and provide tools that allow the integration of biological knowledge embedded in the GO structure into different biological analyses. There is a need for a unified tool that provides the scientific community with the opportunity to explore these different GO similarity measure approaches and their biological applications. We have developed DaGO-Fun, an online tool available at http://web.cbio.uct.ac.za/ITGOM , which incorporates many different GO similarity measures for exploring, analyzing and comparing GO terms and proteins within the context of GO. It uses GO data and UniProt proteins with their GO annotations as provided by the Gene Ontology Annotation (GOA) project to precompute GO term information content (IC), enabling rapid response to user queries. The DaGO-Fun online tool presents the advantage of integrating all the relevant IC-based GO similarity measures, including topology- and annotation-based approaches to facilitate effective exploration of these measures, thus enabling users to choose the most relevant approach for their application. Furthermore, this tool includes several biological applications related to GO semantic similarity scores, including the retrieval of genes based on their GO annotations, the clustering of functionally related genes within a set, and term enrichment analysis. |
Databáze: | OpenAIRE |
Externí odkaz: |