A numerical integration scheme for special finite elements for the Helmholtz equation

Autor: Bernard Peseux, Peter Bettess, Jon Trevelyan, Omar Laghrouche, Rie Sugimoto, Joseph J. Shirron
Přispěvatelé: Durham University, Naval Research Laboratory (NRL), Institut de Recherche en Génie Civil et Mécanique (GeM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2002
Předmět:
Zdroj: Heriot-Watt University
International Journal for Numerical Methods in Engineering
International Journal for Numerical Methods in Engineering, Wiley, 2003, 56 (4), pp.531-552. ⟨10.1002/nme.575⟩
ISSN: 1097-0207
0029-5981
DOI: 10.1002/nme.575
Popis: International audience; The theory for integrating the element matrices for rectangular, triangular and quadrilateral finite elements for the solution of the Helmholtz equation for very short waves is presented. A numerical integration scheme is developed. Samples of Maple and Fortran code for the evaluation of integration abscissae and weights are made available. The results are compared with those obtained using large numbers of Gauss-Legendre integration points for a range of testing wave problems. The results demonstrate that the method gives correct results, which gives confidence in the procedures, and show that large savings in computation time can be achieved.
Databáze: OpenAIRE