Prolactin selectively transported to cerebrospinal fluid from blood under hypoxic/ischemic conditions
Autor: | Tomoya Ikeda, Akihiro Ohyama, Miho Watanabe, Takaki Ishikawa, Junko Toyomura, Naoto Tani |
---|---|
Rok vydání: | 2018 |
Předmět: |
Male
Vascular Endothelial Growth Factor A 0301 basic medicine Pituitary gland Critical Care and Emergency Medicine Physiology lcsh:Medicine Miniature swine Pathology and Laboratory Medicine Nervous System chemistry.chemical_compound 0302 clinical medicine Cerebrospinal fluid Ischemia Medicine and Health Sciences Child Hypoxia lcsh:Science Trauma Medicine Cerebrospinal Fluid Aged 80 and over Multidisciplinary Brain Middle Aged Body Fluids Vascular endothelial growth factor Head Injury Protein Transport Blood medicine.anatomical_structure Pituitary Gland Child Preschool Female Choroid plexus Anatomy medicine.symptom Burns Traumatic Injury hormones hormone substitutes and hormone antagonists Research Article Adult endocrine system medicine.medical_specialty Adolescent Endocrine System Cell Line Asphyxia Young Adult 03 medical and health sciences Signs and Symptoms Diagnostic Medicine Internal medicine medicine Humans RNA Messenger Secretion Aged business.industry lcsh:R Biology and Life Sciences Infant Hypoxia (medical) medicine.disease Survival Analysis Prolactin Neuroanatomy 030104 developmental biology Endocrinology Gene Expression Regulation chemistry Choroid Plexus lcsh:Q Physiological Processes business 030217 neurology & neurosurgery Neuroscience |
Zdroj: | PLoS ONE, Vol 13, Iss 6, p e0198673 (2018) PLoS ONE |
ISSN: | 1932-6203 |
Popis: | Aim The aim of this study was to determine and to verify the correlation between the amount of prolactin (PRL) levels in the blood and in the cerebrospinal fluid (CSF) by various causes of death as an indicator for acute hypoxia in autopsy cases. It is to confirm the cause of the change in prolactin level in CSF by in vitro system. Materials and methods In autopsy materials, the PRL levels in blood from the right heart ventricle and in the CSF were measured by chemiluminescent enzyme immunoassay, and changes in the percentage of PRL-positive cells in the pituitary gland were examined using an immunohistochemical method. Furthermore, an inverted culture method was used as an in vitro model of the blood-CSF barrier using epithelial cells of the human choroid plexus (HIBCPP cell line) and SDR-P-1D5 or MSH-P3 (PRL-secreting cell line derived from miniature swine hypophysis) under normoxic or hypoxic (5% oxygen) conditions, and as an index of cell activity, we used Vascular Endothelial Growth Factor (VEGF). Results and discussion Serum PRL levels were not significantly different between hypoxia/ischemia cases and other causes of death. However, PRL levels in CSF were three times higher in cases of hypoxia/ischemia than in those of the other causes of death. In the cultured cell under the hypoxia condition, PRL and VEGF showed a high concentration at 10 min. We established a brain-CSF barrier model to clarify the mechanism of PRL transport to CSF from blood, the PRL concentrations from blood to CSF increased under hypoxic conditions from 5 min. These results suggested that PRL moves in CSF through choroidal epithelium from blood within a short time. PRL is hypothesized to protect the hypoxic/ischemic brain, and this may be because of the increased transportation of the choroid plexus epithelial cells. |
Databáze: | OpenAIRE |
Externí odkaz: |