Popis: |
A series of pyrene photoacids is used to investigate excited-state proton transfer with time-dependent pump-probe spectroscopy. The deprotonation dynamics of a cationic photoacid, 8-aminopyrene-1,3,6-trisulfonic acid trisodium salt (APTS), shows single exponential dynamics( approximately 30 ps) in water. This is in contrast to what is observed for the neutral photoacids 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) and 8-hydroxy-N,N,N',N',N",N"-hexamethylpyrene-1,3,6-trisulfonamide, which display biexponential dynamics. For the cationic photoacid, the vast majority of the intramolecular charge redistribution does not occur in the protonated state. Instead, the charge redistribution, which is responsible for the photoacidity and the observed spectroscopic changes, occurs primarily following the excited-state proton transfer. The lack of charge redistribution prior to proton transfer causes APTS to display single exponential kinetics. In contrast, the dynamics for the neutral photoacids are multiexponential because major charge redistribution precedes proton transfer followed by additional charge redistribution that accompanies proton transfer. Previous studies of HPTS in water are discussed in terms of the results presented here. |