An Empirical Validation of the Within-subject Biospecimens Pooling Approach to Minimize Exposure Misclassification in Biomarker-based Studies

Autor: Valérie Siroux, Enrique F. Schisterman, Sarah Lyon-Caen, Antonia M. Calafat, Céline Vernet, Claire Philippat, Pierre Hainaut, Xiaoyun Ye, Rémy Slama, Lydiane Agier
Přispěvatelé: Institute for Advanced Biosciences / Institut pour l'Avancée des Biosciences (Grenoble) (IAB), Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Centers for Disease Control and Prevention [Atlanta, GA, USA] (CDCP), Université Grenoble Alpes (UGA), Eunice Kennedy Shriver National Institute of Child Health and Human Development [Rockville, MD, USA], Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Siroux, Valérie
Rok vydání: 2019
Předmět:
Oncology
exposure assessment
Epidemiology
Pooling
phenols
MESH: Epidemiologic Research Design
01 natural sciences
010104 statistics & probability
Empirical validity
MESH: Phenols
MESH: Pregnancy
0302 clinical medicine
Pregnancy
MESH: Bias
Medicine
030212 general & internal medicine
Follow up studies
MESH: Follow-Up Studies
MESH: Reproducibility of Results
within-subject variability
sampling design
Biomarker (medicine)
Environmental Pollutants
Female
Environmental Monitoring
Adult
Validation study
medicine.medical_specialty
attenuation bias
MESH: Environmental Exposure
Within person
MEDLINE
Article
03 medical and health sciences
Bias
exposure biomarkers
Internal medicine
Humans
[SDV.EE.SANT] Life Sciences [q-bio]/Ecology
environment/Health

pooling
0101 mathematics
Exposure assessment
[SDV.EE.SANT]Life Sciences [q-bio]/Ecology
environment/Health

MESH: Humans
business.industry
Reproducibility of Results
Environmental Exposure
[SDV.SPEE] Life Sciences [q-bio]/Santé publique et épidémiologie
Epidemiologic Research Design
MESH: Biomarkers
[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie
business
Biomarkers
measurement error
Follow-Up Studies
Zdroj: Epidemiology
Epidemiology, Lippincott, Williams & Wilkins, 2019, 30 (5), pp.756-767. ⟨10.1097/EDE.0000000000001056⟩
Epidemiology, 2019, 30 (5), pp.756-767. ⟨10.1097/EDE.0000000000001056⟩
ISSN: 1044-3983
1531-5487
DOI: 10.1097/ede.0000000000001056
Popis: International audience; Background: Within-subject biospecimens pooling can theoretically reduce bias in dose-response functions from biomarker-based studies when exposure assessment suffers from classical-type error. However, collecting many urine voids each day is cumbersome. We evaluated the empirical validity of a within-subject pooling approach and compared several options to avoid sampling each void.Methods: In 16 pregnant women who collected a spot of each urine void over several nonconsecutive weeks, we compared concentrations of 10 phenols in daily, weekly, and pregnancy within-subject pools. We pooled either three or all daily samples. In a simulation study using these data, we quantified bias in dose-response functions when using one to 20 urine samples per subject to assess methylparaben (a compound with moderate within-subject variability) and bisphenol A (high variability) exposures.Results: Correlations between exposure estimates from pools of all and of only three voids per day were above 0.80 for all time windows and compounds, except for benzophenone-3 and triclosan in the daily time window (correlations, 0.57-0.68). With one spot sample to assess pregnancy exposure, correlations were all below 0.74. Using only one biospecimen led to attenuation bias in the dose-response functions of 29% (methylparaben) and 69% (bisphenol A); four samples for methylparaben and 18 for bisphenol A decreased bias to 10%.Conclusions: For nonpersistent chemicals, collecting and pooling three samples per day instead of all daily samples efficiently estimates exposures over a week or more. Collecting around 20 biospecimens can strongly limit attenuation bias for nonpersistent chemicals such as bisphenol A.
Databáze: OpenAIRE