Semantic sentence similarity. Size does not always matter

Autor: Stefan L. Frank, Mirjam Ernestus, Danny Merkx
Rok vydání: 2021
Předmět:
Zdroj: Proceedings of Interspeech 2021, pp. 4393-4397
Proceedings of Interspeech 2021, 4393-4397. [S.l.] : ISCA
STARTPAGE=4393;ENDPAGE=4397;TITLE=Proceedings of Interspeech 2021
Proceedings of Interspeech 2021
Popis: This study addresses the question whether visually grounded speech recognition (VGS) models learn to capture sentence semantics without access to any prior linguistic knowledge. We produce synthetic and natural spoken versions of a well known semantic textual similarity database and show that our VGS model produces embeddings that correlate well with human semantic similarity judgements. Our results show that a model trained on a small image-caption database outperforms two models trained on much larger databases, indicating that database size is not all that matters. We also investigate the importance of having multiple captions per image and find that this is indeed helpful even if the total number of images is lower, suggesting that paraphrasing is a valuable learning signal. While the general trend in the field is to create ever larger datasets to train models on, our findings indicate other characteristics of the database can just as important important.
Comment: This paper has been accepted at Interspeech 2021 where it will be presented and appear in the conference proceedings in September 2021
Databáze: OpenAIRE