Planar graphs as L-intersection or L-contact graphs

Autor: Lucas Isenmann, Claire Pennarun, Daniel Gonçalves
Přispěvatelé: Algorithmes, Graphes et Combinatoire (ALGCO), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), ANR-16-CE40-0009,GATO,Graphes, Algorithmes et TOpologie(2016)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Computational Geometry (cs.CG)
FOS: Computer and information sciences
Plane (geometry)
0102 computer and information sciences
02 engineering and technology
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
Computer Science::Computational Geometry
[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG]
01 natural sciences
Planar graph
Combinatorics
symbols.namesake
Intersection
010201 computation theory & mathematics
Simple (abstract algebra)
TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
0202 electrical engineering
electronic engineering
information engineering

symbols
Computer Science - Computational Geometry
020201 artificial intelligence & image processing
Representation (mathematics)
Mathematics
MathematicsofComputing_DISCRETEMATHEMATICS
Zdroj: SODA
29th Annual ACM-SIAM Symposium on Discrete Algorithms
SODA: Symposium on Discrete Algorithms
SODA: Symposium on Discrete Algorithms, Jan 2018, New Orleans, United States. pp.172-184, ⟨10.1137/1.9781611975031.12⟩
DOI: 10.1137/1.9781611975031.12⟩
Popis: International audience; The ⌞-intersection graphs are the graphs that have a representation as intersection graphs of axis-parallel ⌞ shapes in the plane. A subfamily of these graphs are {⌞, |, –}-contact graphs which are the contact graphs of axis parallel ⌞, |, and – shapes in the plane. We prove here two results that were conjectured by Chaplick and Ueckerdt in 2013. We show that planar graphs are ⌞-intersection graphs, and that triangle-free planar graphs are {⌞, |, –}-contact graphs. These results are obtained by a new and simple decomposition technique for 4-connected triangulations. Our results also provide a much simpler proof of the known fact that planar graphs are segment intersection graphs.
Databáze: OpenAIRE