Computing the atom graph of a graph and the union join graph of a hypergraph
Autor: | Anne Berry, Geneviève Simonet |
---|---|
Přispěvatelé: | Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne), Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA), Algorithmes, Graphes et Combinatoire (ALGCO), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2016 |
Předmět: |
FOS: Computer and information sciences
Hypergraph Discrete Mathematics (cs.DM) Industrial engineering. Management engineering MathematicsofComputing_GENERAL clique graph [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] T55.4-60.8 Clique (graph theory) Clique graph Computer Science::Digital Libraries α-acyclic hypergraph Theoretical Computer Science clique separator decomposition atom tree atom graph clique tree Combinatorics Computer Science::Discrete Mathematics Computer Science - Data Structures and Algorithms Physics::Atomic and Molecular Clusters Data Structures and Algorithms (cs.DS) Physics::Atomic Physics Time complexity Mathematics Condensed Matter::Quantum Gases Numerical Analysis QA75.5-76.95 Tree (graph theory) Matrix multiplication Complement (complexity) Computational Mathematics Computational Theory and Mathematics Electronic computers. Computer science Computer Science::Programming Languages Join (sigma algebra) Computer Science - Discrete Mathematics MathematicsofComputing_DISCRETEMATHEMATICS |
Zdroj: | Algorithms, Vol 14, Iss 347, p 347 (2021) Algorithms; Volume 14; Issue 12; Pages: 347 Algorithms Algorithms, 2021, 14 (12), pp.347-367. ⟨10.3390/a14120347⟩ |
ISSN: | 1999-4893 |
DOI: | 10.48550/arxiv.1607.02911 |
Popis: | The atom graph of a graph is the graph whose vertices are the atoms obtained by clique minimal separator decomposition of this graph, and whose edges are the edges of all possible atom trees of this graph. We provide two efficient algorithms for computing this atom graph, with a complexity in $O(min(n^\alpha \log n, nm, n(n+\overline{m}))$ time, which is no more than the complexity of computing the atoms in the general case. %\par We extend our results to $\alpha$-acyclic hypergraphs. We introduce the notion of union join graph, which is the union of all possible join trees; we apply our algorithms for atom graphs to efficiently compute union join graphs. Keywords: clique separator decomposition, atom tree, atom graph, clique tree, clique graph, $\alpha$-acyclic hypergraph. Comment: Submitted in Algorithms on July 11, 2016 |
Databáze: | OpenAIRE |
Externí odkaz: |