Weakly Supervised Object Localization with Multi-Fold Multiple Instance Learning
Autor: | Ramazan Gokberk Cinbis, Jakob Verbeek, Cordelia Schmid |
---|---|
Přispěvatelé: | Department of Computer Engineering, Universite Bilkent [Ankara], Bilkent University [Ankara]-Bilkent University [Ankara], Apprentissage de modèles à partir de données massives (Thoth ), Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria), ERC_Allegro, AXES, European Project: 320559,EC:FP7:ERC,ERC-2012-ADG_20120216,ALLEGRO(2013), European Project: 269980,EC:FP7:ICT,FP7-ICT-2009-6,AXES(2011), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), OpenMETU |
Rok vydání: | 2016 |
Předmět: |
FOS: Computer and information sciences
Iterative method Computer science Iterative methods Object detection Location Experimental evaluation Computer Vision and Pattern Recognition (cs.CV) Supervised trainings Computer Science - Computer Vision and Pattern Recognition Fisher vector Convolutional neural network 02 engineering and technology Object localization Artificial Intelligence Minimum bounding box 0202 electrical engineering electronic engineering information engineering Locks (fasteners) Computer vision Refinement methods computer.programming_language Learning systems business.industry Weakly supervised learning Applied Mathematics Multiple instance learning Supervised learning [INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] 020207 software engineering Pattern recognition Pascal (programming language) Object recognition Visualization Computational Theory and Mathematics Localization accuracy 020201 artificial intelligence & image processing Viola–Jones object detection framework Computer Vision and Pattern Recognition Artificial intelligence business computer Software Neural networks |
Zdroj: | IEEE Transactions on Pattern Analysis and Machine Intelligence IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2017, 39 (1), pp.189-203. ⟨10.1109/TPAMI.2016.2535231⟩ IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (1), pp.189-203. ⟨10.1109/TPAMI.2016.2535231⟩ |
ISSN: | 1939-3539 0162-8828 |
DOI: | 10.1109/TPAMI.2016.2535231⟩ |
Popis: | Object category localization is a challenging problem in computer vision. Standard supervised training requires bounding box annotations of object instances. This time-consuming annotation process is sidestepped in weakly supervised learning. In this case, the supervised information is restricted to binary labels that indicate the absence/presence of object instances in the image, without their locations. We follow a multiple-instance learning approach that iteratively trains the detector and infers the object locations in the positive training images. Our main contribution is a multi-fold multiple instance learning procedure, which prevents training from prematurely locking onto erroneous object locations. This procedure is particularly important when using high-dimensional representations, such as Fisher vectors and convolutional neural network features. We also propose a window refinement method, which improves the localization accuracy by incorporating an objectness prior. We present a detailed experimental evaluation using the PASCAL VOC 2007 dataset, which verifies the effectiveness of our approach. Comment: To appear in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) |
Databáze: | OpenAIRE |
Externí odkaz: |