A Competency-Based Learning Resource Retrieval Process: The LUISA-UHP Case-Study

Autor: Monique Grandbastien
Přispěvatelé: Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria), Université Henri Poincaré - Nancy 1 (UHP), IFIP TC3, Arthur Tatnall and Anthony Jones, Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2009
Předmět:
Computer science
Process (engineering)
[SHS.EDU]Humanities and Social Sciences/Education
Semantic based search
02 engineering and technology
Ontology (information science)
computer.software_genre
ACM: K.: Computing Milieux/K.3: COMPUTERS AND EDUCATION/K.3.0: General
Resource (project management)
0202 electrical engineering
electronic engineering
information engineering

ACM: K.: Computing Milieux/K.3: COMPUTERS AND EDUCATION
ontology
Competence (human resources)
competencies
Information retrieval
05 social sciences
metadata
learning resource
050301 education
ACM: K.: Computing Milieux
Metadata
Competency-based learning
Ontology
retrieving process
Semantic technology
020201 artificial intelligence & image processing
[INFO.EIAH]Computer Science [cs]/Technology for Human Learning
Web service
0503 education
computer
Zdroj: proc 9th TC3 World Conference on Computers in Education
9th TC3 World Conference on Computers in Education
9th TC3 World Conference on Computers in Education, IFIP TC3, Jul 2009, Bento Goncalves, Brazil. 10 p, ⟨10.1007/978-3-642-03115-1⟩
Education and Technology for a Better World ISBN: 9783642031144
WCCE
DOI: 10.1007/978-3-642-03115-1⟩
Popis: This is an intermediate version of the final version which is available from http://www.springerlink.com . The power point presentation is also available, with more screen copies from the system; International audience; The paper describes a global framework enabling competency-based search of learning resources making a heavy use of semantic technologies. First it presents the generic components. Then it exemplifies how this framework can be adapted to a given environment, i.e. which knowledge representations, Web Services descriptions and other components have to be tailored or added to the framework. Then it shows step by step how a query is processed, Finally, users' feedback, lessons learnt and future trends are provided as well as comparisons with other approaches already published about annotating and retrieving learning objects in Learning Objects Repositories.
Databáze: OpenAIRE