Divide-and-Learn: A Random Indexing Approach to Attribute Inference Attacks in Online Social Networks

Autor: Sanaz Eidizadehakhcheloo, Bizhan Alipour Pijani, Abdessamad Imine, Michaël Rusinowitch
Přispěvatelé: Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Proof techniques for security protocols (PESTO), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Formal Methods (LORIA - FM), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), TC 11, WG 11.3, Ken Barker
Rok vydání: 2021
Předmět:
Zdroj: Data and Applications Security and Privacy XXXV ISBN: 9783030812416
DBSec
Data and Applications Security and Privacy XXXV-35th Annual IFIP WG 11.3 Conference, DBSec 2021
Data and Applications Security and Privacy XXXV-35th Annual IFIP WG 11.3 Conference, DBSec 2021, Jul 2021, Calgary, Canada
Lecture Notes in Computer Science
35th IFIP Annual Conference on Data and Applications Security and Privacy (DBSec)
35th IFIP Annual Conference on Data and Applications Security and Privacy (DBSec), Jul 2021, Calgary, AB, Canada. pp.338-356, ⟨10.1007/978-3-030-81242-3_20⟩
DOI: 10.1007/978-3-030-81242-3_20
Popis: Part 6: Potpourri II; International audience; We present a Divide-and-Learn machine learning methodology to investigate a new class of attribute inference attacks against Online Social Networks (OSN) users. Our methodology analyzes commenters' preferences related to some user publications (e.g., posts or pictures) to infer sensitive attributes of that user. For classification performance, we tune Random Indexing (RI) to compute several embeddings for textual units (e.g., word, emoji), each one depending on a specific attribute value. RI guarantees the comparability of the generated vectors for the different values. To validate the approach, we consider three Facebook attributes: gender, age category and relationship status, which are highly relevant for targeted advertising or privacy threatening applications. By using an XGBoost classifier, we show that we can infer Facebook users' attributes from commenters' reactions to their publications with AUC from 94% to 98%, depending on the traits.
Databáze: OpenAIRE