A Note on Reconfiguring Tree Linkages: Trees can Lock

Autor: Martin L. Demaine, Steve Robbins, Anna Lubiw, Ileana Streinu, Joseph O'Rourke, Godfried T. Toussaint, Erik D. Demaine, Sue Whitesides, Sylvain Lazard, Therese C. Biedl
Přispěvatelé: Department of Computer Science [Calgary] (CPSC), University of Calgary, Models, algorithms and geometry for computer graphics and vision (ISA), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), School of computer science [Ottawa] (SCS), Carleton University
Jazyk: angličtina
Rok vydání: 2002
Předmět:
Zdroj: Discrete Applied Mathematics
Discrete Applied Mathematics, 2002, 117 (1-3), pp.293-297. ⟨10.1016/S0166-218X(01)00229-3⟩
Discrete Applied Mathematics, Elsevier, 2002, 117 (1-3), pp.293-297. ⟨10.1016/S0166-218X(01)00229-3⟩
ISSN: 0166-218X
DOI: 10.1016/S0166-218X(01)00229-3⟩
Popis: Article dans revue scientifique avec comité de lecture.; It has recently been shown that any polygonal chain in the plane can be reconfigured to lie on a straight line, and any polygon can be reconfigured to be convex. This result cannot be extended to tree linkages: we show that there are trees with two configurations that are not connected by a motion. Indeed, we prove that an $N$-link tree can have $2^{Omega(N)}$ equivalence classes of configurations.
Databáze: OpenAIRE