Signal Transduction in Insulin Secretion

Autor: Claes B. Wollheim, T J Biden
Rok vydání: 1986
Předmět:
Zdroj: Annals of the New York Academy of Sciences. 488:317-333
ISSN: 1749-6632
0077-8923
Popis: The initial events in signal transduction in insulin-secreting cells are summarized in FIGURE 8. Both nutrient stimuli, such as glucose and amino acids and the muscarinic agonist carbachol (carbamylcholine) raise [Ca2+]i. Although the rise in [Ca2+]i precedes the stimulation of insulin release, it is not a moment-to-moment regulator of release. The metabolizable fuel stimuli cause Ca2+ influx through voltage-dependent Ca2+ channels following depolarization of the membrane potential. In contrast, carbachol, which does not depolarize, elicits Ptd Ins 4,5-P2 hydrolysis, a reaction catalyzed by phospholipase C. The generation of Ins 1,4,5-P3 in this instance is Ca2+ independent, but appears to involve a GTP-binding protein. However, this protein is not a substrate for pertussis toxin. The levels of Ins 1,4,5-P3, which releases Ca2+ from an ATP-dependent Ca2+ pool of the endoplasmic reticulum, are increased prior to the rise in [Ca2+]i. The mitochondria may take up Ca2+ after large increases in [Ca2+]i. A previously proposed second messenger, arachidonic acid, is much less selective than Ins 1,4,5-P3 in that it releases Ca2+ from mitochondria as well as from the endoplasmic reticulum in a slow and irreversible manner. As Ins 1,4,5-P3 is also generated during glucose stimulation of islets, albeit in a Ca2+-dependent manner, this metabolite could mediate not only the action of carbachol but also contribute to amplifying the [Ca2+]i rise in response to glucose.
Databáze: OpenAIRE