Benthic Habitat Map of the Southern Adriatic Sea (Mediterranean Sea) from Object-Based Image Analysis of Multi-Source Acoustic Backscatter Data
Autor: | Tim Le Le Bas, Valentina Grande, Marco Taviani, Giorgio Castellan, Federica Foglini, Mariacristina Prampolini, Lorenzo Angeletti |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Adriatic Sea
010504 meteorology & atmospheric sciences multibeam backscatter Science RSOBIA automatic classification benthic habitat map Image segmentation Structural basin 010502 geochemistry & geophysics Spatial distribution 01 natural sciences Seafloor spreading Mediterranean sea Remote sensing (archaeology) General Earth and Planetary Sciences Bathymetry Geology Seabed 0105 earth and related environmental sciences Remote sensing |
Zdroj: | Remote Sensing, Vol 13, Iss 2913, p 2913 (2021) Remote Sensing; Volume 13; Issue 15; Pages: 2913 Remote sensing (Basel) 13 (2021). doi:10.3390/rs13152913 info:cnr-pdr/source/autori:Prampolini M.; Angeletti L.; Castellan G.; Grande V.; Le Bas T.; Taviani M.; Foglini F./titolo:Benthic habitat map of the southern adriatic sea (Mediterranean sea) from object-based image analysis of multi-source acoustic backscatter data/doi:10.3390%2Frs13152913/rivista:Remote sensing (Basel)/anno:2021/pagina_da:/pagina_a:/intervallo_pagine:/volume:13 Remote sensing |
ISSN: | 2072-4292 |
Popis: | A huge amount of seabed acoustic reflectivity data has been acquired from the east to the west side of the southern Adriatic Sea (Mediterranean Sea) in the last 18 years by CNR-ISMAR. These data have been used for geological, biological and habitat mapping purposes, but a single and consistent interpretation of them has never been carried out. Here, we aimed at coherently interpreting acoustic data images of the seafloor to produce a benthic habitat map of the southern Adriatic Sea showing the spatial distribution of substrates and biological communities within the basin. The methodology here applied consists of a semi-automated classification of acoustic reflectivity, bathymetry and bathymetric derivatives images through object-based image analysis (OBIA) performed by using the ArcGIS tool RSOBIA (Remote Sensing OBIA). This unsupervised image segmentation was carried out on each cruise dataset separately, then classified and validated through comparison with bottom samples, images, and prior knowledge of the study areas. |
Databáze: | OpenAIRE |
Externí odkaz: |