POSTER: SPiDRE: accelerating sparse memory access patterns
Autor: | Miquel Moreto, Jonathan C. Beard, Adrian Barredo |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Doctorat en Arquitectura de Computadors, Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors, Barcelona Supercomputing Center, Universitat Politècnica de Catalunya. CAP - Grup de Computació d'Altes Prestacions |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Hardware_MEMORYSTRUCTURES
CPU cache Computer science Cache memory Clock rate Acceleration Prefetching Neon Gestió de memòria (Informàtica) Work in process USable Bandwidth Computer architecture Memory management (Computer science) Data analysis Cache Latency (engineering) Coherence Informàtica::Arquitectura de computadors [Àrees temàtiques de la UPC] Sparse matrix |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) PACT |
DOI: | 10.1109/PACT.2019.00056 |
Popis: | Development in process technology has led to an exponential increase in processor speed and memory capacity. However, memory latencies have not improved as dramatically and represent a well-known problem in computer architecture. Cache memories provide more bandwidth with lower latencies than main memories but they are capacity limited. Locality-friendly applications benefit from a large and deep cache hierarchy. Nevertheless, this is a limited solution for applications suffering from sparse and irregular memory access patterns, such as data analytics. In order to accelerate them, we should maximize usable bandwidth, reduce latency and maximize moved data reuse. In this work we explore the Sparse Data Rearrange Engine (SPiDRE), a novel hardware approach to accelerate these applications through near-memory data reorganization. This work has been supported by the Spanish Ministry of Science and Innovation (contract TIN2015-65316-P, Ramon y Cajal fellowship number RYC-2016-21104 and FPI fellowship number BES-2017-080635), and by the Arm-BSC Centre of Excellence initiative. |
Databáze: | OpenAIRE |
Externí odkaz: |