Solving Triangular Intuitionistic Fuzzy Matrix Game by Applying the Accuracy Function Method
Autor: | Dong Qiu, Yumei Xing |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Computer Science::Computer Science and Game Theory
Physics and Astronomy (miscellaneous) Linear programming Mathematics::General Mathematics General Mathematics 0211 other engineering and technologies MathematicsofComputing_NUMERICALANALYSIS Intuitionistic fuzzy 02 engineering and technology Matrix games intuitionistic fuzzy matrix game 0202 electrical engineering electronic engineering information engineering Computer Science (miscellaneous) equilibrium solution intuitionistic fuzzy linear optimization problem accuracy function Mathematics Discrete mathematics 021103 operations research lcsh:Mathematics Stochastic game ComputingMilieux_PERSONALCOMPUTING TheoryofComputation_GENERAL lcsh:QA1-939 Dual (category theory) Single objective TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES Chemistry (miscellaneous) Accuracy function 020201 artificial intelligence & image processing Equilibrium solution |
Zdroj: | Symmetry, Vol 11, Iss 10, p 1258 (2019) Symmetry; Volume 11; Issue 10; Pages: 1258 |
ISSN: | 2073-8994 |
Popis: | In this paper, the matrix game based on triangular intuitionistic fuzzy payoff is put forward. Then, we get a conclusion that the equilibrium solution of this game model is equivalent to the solution of a pair of the primal−dual single objective intuitionistic fuzzy linear optimization problems ( I F L O P 1 ) and ( I F L O D 1 ) . Furthermore, by applying the accuracy function, which is linear, we transform the primal−dual single objective intuitionistic fuzzy linear optimization problems ( I F L O P 1 ) and ( I F L O D 1 ) into the primal−dual discrete linear optimization problems ( G L O P 1 ) and ( G L O D 1 ) . The above primal−dual pair ( G L O P 1 ) − ( G L O D 1 ) is symmetric in the sense the dual of ( G L O D 1 ) is ( G L O P 1 ) . Thus the primal−dual discrete linear optimization problems ( G L O P 1 ) and ( G L O D 1 ) are called the symmetric primal−dual discrete linear optimization problems. Finally, the technique is illustrated by an example. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |