Isometria entre espaços de Wiener abstratos

Autor: Souza, Maria Luisa Cardoso
Přispěvatelé: Ruffino, Paulo Regis Caron, 1967, Pinto Júnior, Dorival Leão, Fragoso, Marcelo Dutra, Garcia, Nancy Lopes, Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática, UNIVERSIDADE ESTADUAL DE CAMPINAS
Rok vydání: 2021
Předmět:
Zdroj: Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual de Campinas (UNICAMP)
instacron:UNICAMP
DOI: 10.47749/t/unicamp.2001.224752
Popis: Orientadores: Paulo Regis Caron Ruffino, Dorival Leão Pinto Júnior Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica Resumo: O objetivo deste trabalho é construir um isomorfismo de espaços de Wiener abstratos (A WS) entre o espaço de Wiener canônico dado pelas trajetórias do movimento browniano (i, BeM, Co[O,I]) e um espaço de Wiener abstrato (i, h. V), definido sobre um espaço vetorial normado dado por um subconjunto do espaço de todas as seqüências de números reais. Além disso, apresentamos uma generalização da construção feita por Paul Lévy da medida de Wiener no espaço de funções contínuas Co[O,I]. Mais precisamente, Paul Lévy construiu a medida de Wiener a partir da integral do sistema ortonormal completo de Haar. No nosso trabalho, tomamos a integral de uma base ortonormal qualquer de L2 ([0,1], B([O,I], m), onde B([O,I] é a a-álgebra de Borel do intervalo [0,1] e m é a medida de Lebesgue Abstract: In this monograph we construct an isomorphism of abstract Wiener space (A WS) between the canonical Wiener space given by the trajectories of the Brownian motion (i, BeM, Co[O,I]) and the A WS (i, lz, V) defined over a normed vector space given by a subset ofthe space ofsequences ofreal numbers. Moreover, we present a generalization of Paul Levy's Wiener measure in the space of continuous functions Co[O,I]. Precisely, he constructed the Wiener measure from a series of gaussian random variables multiplied by the Haar orthonormal basis of L 2 ([0,1], B([O,I], m), where B([O,I] is the Borel a-algebra in the interval [0,1] and m is the Lebesgue measure, we extend this method to a general orthonormal basis ofthis Hilbert space Mestrado Mestre em Matemática
Databáze: OpenAIRE