Well-posedness of Hamilton-Jacobi equations in population dynamics and applications to large deviations

Autor: Richard C. Kraaij, Louis Mahé
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Stochastic Processes and their Applications, 130(9)
ISSN: 0304-4149
Popis: We prove Freidlin–Wentzell type large deviation principles for various rescaled models in populations dynamics that have immigration and possibly harvesting: birth–death processes, Galton–Watson trees, epidemic SI models, and prey–predator models. The proofs are carried out using a general analytic approach based on the well-posedness of a class of associated Hamilton–Jacobi equations. The notable feature for these Hamilton–Jacobi equations is that the Hamiltonian can be discontinuous at the boundary. We prove a well-posedness result for a large class of Hamilton–Jacobi equations corresponding to one-dimensional models, and give partial results for the multi-dimensional setting.
Databáze: OpenAIRE