THE GAME OPERATOR ACTING ON WADGE CLASSES OF BOREL SETS
Autor: | Gabriel Debs, Jean Saint-Raymond |
---|---|
Přispěvatelé: | Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Le Havre Normandie (ULH), Normandie Université (NU) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | The Journal of Symbolic Logic The Journal of Symbolic Logic, Association for Symbolic Logic, 2019, 84 (3), pp.1224-1239. ⟨10.1017/jsl.2019.40⟩ |
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.1017/jsl.2019.40⟩ |
Popis: | We study the behavior of the game operator $$ on Wadge classes of Borel sets. In particular we prove that the classical Moschovakis results still hold in this setting. We also characterize Wadge classes ${\bf{\Gamma }}$ for which the class has the substitution property. An effective variation of these results shows that for all $1 \le \eta < \omega _1^{{\rm{CK}}}$ and $2 \le \xi < \omega _1^{{\rm{CK}}}$, is a Spector class while is not. |
Databáze: | OpenAIRE |
Externí odkaz: |