THE GAME OPERATOR ACTING ON WADGE CLASSES OF BOREL SETS

Autor: Gabriel Debs, Jean Saint-Raymond
Přispěvatelé: Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Le Havre Normandie (ULH), Normandie Université (NU)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: The Journal of Symbolic Logic
The Journal of Symbolic Logic, Association for Symbolic Logic, 2019, 84 (3), pp.1224-1239. ⟨10.1017/jsl.2019.40⟩
ISSN: 0022-4812
1943-5886
DOI: 10.1017/jsl.2019.40⟩
Popis: We study the behavior of the game operator $$ on Wadge classes of Borel sets. In particular we prove that the classical Moschovakis results still hold in this setting. We also characterize Wadge classes ${\bf{\Gamma }}$ for which the class has the substitution property. An effective variation of these results shows that for all $1 \le \eta < \omega _1^{{\rm{CK}}}$ and $2 \le \xi < \omega _1^{{\rm{CK}}}$, is a Spector class while is not.
Databáze: OpenAIRE