Demo Application for the AutoGOAL Framework

Autor: Rafael Muñoz-Guillena, Andrés Montoyo, Alejandro Piad-Morffis, Yudivián Almeida Cruz, Yoan Gutiérrez, Suilan Estevez-Velarde
Přispěvatelé: Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos, Procesamiento del Lenguaje y Sistemas de Información (GPLSI)
Rok vydání: 2020
Předmět:
Zdroj: RUA. Repositorio Institucional de la Universidad de Alicante
Universidad de Alicante (UA)
COLING (Demonstrations)
Popis: This paper introduces a web demo that showcases the main characteristics of the AutoGOAL framework. AutoGOAL is a framework in Python for automatically finding the best way to solve a given task. It has been designed mainly for automatic machine learning (AutoML) but it can be used in any scenario where several possible strategies are available to solve a given computational task. In contrast with alternative frameworks, AutoGOAL can be applied seamlessly to Natural Language Processing as well as structured classification problems. This paper presents an overview of the framework’s design and experimental evaluation in several machine learning problems, including two recent NLP challenges. The accompanying software demo is available online and full source code is provided under the MIT open-source license. This research has been supported by a Carolina Foundation grant in agreement with University of Alicante and University of Havana. Moreover, it has also been partially funded by both aforementioned universities, the Generalitat Valenciana (Conselleria d’Educaci´o, Investigaci´o, Cultura i Esport) and the Spanish Government through the projects LIVING-LANG (RTI2018-094653-B-C22) and SIIA (PROMETEO/2018/089, PROMETEU/2018/089).
Databáze: OpenAIRE