The effect of uterine motion and uterine margins on target and normal tissue doses in intensity modulated radiation therapy of cervical cancer
Autor: | J. J. Gordon, Nesrin Dogan, Elisabeth Weiss, Jeffrey V. Siebers, O K Abayomi |
---|---|
Rok vydání: | 2011 |
Předmět: |
Organs at Risk
Movement Uterus Normal tissue Uterine Cervical Neoplasms Radiation Dosage Article Patient Positioning medicine Humans Radiology Nuclear Medicine and imaging Cervix Cervical cancer Stochastic Processes Radiological and Ultrasound Technology medicine.diagnostic_test business.industry Radiotherapy Planning Computer-Assisted Uncertainty Dose fractionation Radiotherapy Dosage Magnetic resonance imaging Intensity-modulated radiation therapy medicine.disease Magnetic Resonance Imaging medicine.anatomical_structure Fundus (uterus) Female Dose Fractionation Radiation Radiotherapy Intensity-Modulated business Nuclear medicine |
Zdroj: | Physics in Medicine and Biology. 56:2887-2901 |
ISSN: | 1361-6560 0031-9155 |
DOI: | 10.1088/0031-9155/56/10/001 |
Popis: | In intensity modulated radiation therapy (IMRT) of cervical cancer, uterine motion can be larger than cervix motion, requiring a larger clinical target volume to planning target volume (CTV-to-PTV) margin around the uterine fundus. This work simulates different motion models and margins to estimate the dosimetric consequences. A virtual study used image sets from ten patients. Plans were created with uniform margins of 1 cm (PTV(A)) and 2.4 cm (PTV(C)), and a margin tapering from 2.4 cm at the fundus to 1 cm at the cervix (PTV(B)). Three inter-fraction motion models (MM) were simulated. In MM1, all structures moved with normally distributed rigid body translations. In MM2, CTV motion was progressively magnified as one moved superiorly from the cervix to the fundus. In MM3, both CTV and normal tissue motion were magnified as in MM2, modeling the scenario where normal tissues move into the void left by the mobile uterus. Plans were evaluated using static and percentile DVHs. For a conventional margin (PTV(A)), quasi-realistic uterine motion (MM3) reduces fundus dose by about 5 Gy and increases normal tissue volumes receiving 30-50 Gy by ∼5%. A tapered CTV-to-PTV margin can restore fundus and CTV doses, but will increase normal tissue volumes receiving 30-50 Gy by a further ∼5%. |
Databáze: | OpenAIRE |
Externí odkaz: |