Time-frequency analysis on the adeles over the rationals

Autor: Franz Luef, Ulrik Enstad, Mads Sielemann Jakobsen
Rok vydání: 2018
Předmět:
ISSN: 1631-073X
DOI: 10.48550/arxiv.1807.07011
Popis: We show that the construction of Gabor frames in $L^{2}(\mathbb{R})$ with generators in $\mathbf{S}_{0}(\mathbb{R})$ and with respect to time-frequency shifts from a rectangular lattice $\alpha\mathbb{Z}\times\beta\mathbb{Z}$ is equivalent to the construction of certain Gabor frames for $L^{2}$ over the adeles over the rationals and the group $\mathbb{R}\times\mathbb{Q}_{p}$. Furthermore, we detail the connection between the construction of Gabor frames on the adeles and on $\mathbb{R}\times\mathbb{Q}_{p}$ with the construction of certain Heisenberg modules.
Comment: minor revisions, added more references, added a Balian-Low type result in the form of Proposition 4.4
Databáze: OpenAIRE