Popis: |
The main contribution of the paper is proving that the Fourier spot volatility estimator introduced in [Malliavin and Mancino, 2002] is consistent and asymptotically efficient if the price process is contaminated by microstructure noise. Specifically, in the presence of additive microstructure noise we prove a Central Limit Theorem with the optimal rate of convergence $n^{1/8}$. The result is obtained without the need for any manipulation of the original data or bias correction. Moreover, we complete the asymptotic theory for the Fourier spot volatility estimator in the absence of noise, originally presented in [Mancino and Recchioni, 2015], by deriving a Central Limit Theorem with the optimal convergence rate $n^{1/4}$. Finally, we propose a novel feasible adaptive method for the optimal selection of the parameters involved in the implementation of the Fourier spot volatility estimator with noisy high-frequency data and provide support to its accuracy both numerically and empirically. |