Parametric Solution of Certain Nonlinear Differential Equations in Cosmology
Autor: | Jennie D'Ambroise, Floyd L. Williams |
---|---|
Rok vydání: | 2021 |
Předmět: |
Condensed Matter::Quantum Gases
Mathematical analysis Elliptic function FOS: Physical sciences Sigma Statistical and Nonlinear Physics General Relativity and Quantum Cosmology (gr-qc) Mathematical Physics (math-ph) Function (mathematics) General Relativity and Quantum Cosmology 33E05 83C20 83F05 Riemann zeta function Weierstrass function Nonlinear system symbols.namesake Ordinary differential equation symbols Mathematical Physics Mathematics Parametric statistics |
Zdroj: | Journal of Nonlinear Mathematical Physics. 18:269 |
ISSN: | 1776-0852 |
DOI: | 10.1142/s140292511100143x |
Popis: | We obtain in terms of the Weierstrass elliptic $\wp-$function, sigma function, and zeta function an explicit parametrized solution of a particular nonlinear, ordinary differential equation. This equation includes, in special cases, equations that occur in the study of both homogeneous and inhomogeneous cosmological models, and also in the dynamic Bose-Einstein condensates - cosmology correspondence, for example. |
Databáze: | OpenAIRE |
Externí odkaz: |