Influence of the Compaction Pressure and Sintering Temperature on the Mechanical Properties of Porous Titanium for Biomedical Applications
Autor: | Sergio Muñoz, Paloma Trueba, Yadir Torres, Sandra M. Castillo, Eduardo Díaz |
---|---|
Přispěvatelé: | Universidad de Sevilla. Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Universidad de Sevilla. TEP123: Metalurgia e Ingeniería de los Materiales |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
lcsh:TN1-997
Finite element method Materials science finite element method Compaction Modulus Sintering 02 engineering and technology Bone tissue 01 natural sciences Powder metallurgy 0103 physical sciences medicine General Materials Science Composite material Porosity lcsh:Mining engineering. Metallurgy 010302 applied physics loose sintering Porous titanium Metals and Alloys Stiffness 021001 nanoscience & nanotechnology Loose sintering porous titanium powder metallurgy medicine.anatomical_structure Cortical bone medicine.symptom 0210 nano-technology |
Zdroj: | Metals Volume 9 Issue 12 idUS. Depósito de Investigación de la Universidad de Sevilla instname Metals, Vol 9, Iss 12, p 1249 (2019) |
ISSN: | 2075-4701 |
DOI: | 10.3390/met9121249 |
Popis: | In the present work, the use of porous titanium is proposed as a solution to the difference in stiffness between the implant and bone tissue, avoiding the bone resorption. Conventional powder metallurgical technique is an industrially established route for fabrication of this type of material. The results are discussed in terms of the influence of compaction pressure and sintering temperature on the porosity (volumetric fraction, size, and morphology) and the quality of the sintering necks. A very good agreement between the predicted values obtained using a simple 2D finite element model, the experimental uniaxial compression behavior, and the analytical model proposed by Nielsen, has been found for both the Young&rsquo s modulus and the yield strength. The porous samples obtained by the loose sintering technique and using temperatures between 1000 ° C &minus 1100 ° C (about 40% of total porosity) are recommended for achieving a suitable biomechanical behavior for cortical bone partial replacement. |
Databáze: | OpenAIRE |
Externí odkaz: |