Popis: |
The function of engineered thermal backfills surrounding underground pipelines of the crude oil industry is to prohibit heat migration for the design period of 25 to 50 years. Biochar is suitable for reconstituting standard thermal backfill material since it is biochemically inert and has a low heat conductivity. However, the preparation of biochar from biomass involves an energy-intensive pyrolysis process. This study aims to make biochar production energy-efficient via optimizing the pyrolysis temperatures, specifically for thermal backfill applications. Ten distinct biochars were prepared by pyrolyzing two waste biomass, i.e., water hyacinth (WH) and sugarcane bagasse (SB), at temperatures ranging from 300 to 700 °C. The biochars were assessed based on their thermal conductivity, energy consumption, yield, and stability in soil for the design period. The thermal conductivity of produced biochars varied in a narrow range of 0.10 to 0.13 W m |