Experimental Analysis of a Small-Scale Rotor at Various Inflow Angles
Autor: | Amir Kolaei, Devin F. Barcelos, Götz Bramesfeld |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Physics
020301 aerospace & aeronautics Article Subject Rotor (electric) Propeller (aeronautics) lcsh:Motor vehicles. Aeronautics. Astronautics Aerospace Engineering Thrust 02 engineering and technology Inflow Mechanics 01 natural sciences 010305 fluids & plasmas law.invention Axial compressor 0203 mechanical engineering law 0103 physical sciences Advance ratio lcsh:TL1-4050 Multirotor Freestream |
Zdroj: | International Journal of Aerospace Engineering, Vol 2018 (2018) |
ISSN: | 1687-5974 1687-5966 |
Popis: | The performance characteristics of a rotor that is typically used for small unmanned aircraft were analyzed in a series of wind-tunnel experiments. Wind-tunnel measurements were conducted with the rotor at various inflow angles in order to investigate the effects on the rotor performance of partially or fully edgewise flow as they are typically encountered with small multirotor vehicles. Rotor tests were also performed under static and fully axial flow conditions in order to investigate the aerodynamic performance during hover as well as vertical climb and descent. The wind-tunnel data were corrected to account for the interference of wind-tunnel walls with the rotor wake and the blockage due to the presence of the rotor test stand in the wind-tunnel test section. The results are presented in terms of thrust, power, and roll moment coefficients under different rotor rotational speeds for a T-motor 18x6.1. Additionally, the measured thrust and power coefficients of Master Airscrew Electric 11x7 are compared with available propeller data under static and axial flow conditions for verification purposes. It is shown that the rotor performance characteristics are strongly affected by the freestream advance ratio and the freestream inflow angles. For example, at inflow angles that are typical for multirotor vehicles between about 15° and 0° with respect to the rotor disc, thrust coefficients stay constant or grow with increasing advance ratio, whereas power coefficients remain relatively constant with changing advance ratio. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |