Angiotensin‐converting enzyme inhibitors attenuated advanced glycation end products‐induced renal tubular hypertrophy via enhancing nitric oxide signaling

Autor: Yao‐Bin Liu, Wei-Chih Kan, Jean-Yu Hwang, Jinn-Yuh Guh, Jau-Shyang Huang, Lea-Yea Chuang, Yu-Lin Yang
Rok vydání: 2019
Předmět:
Zdroj: Journal of Cellular Physiology. 234:17473-17481
ISSN: 1097-4652
0021-9541
DOI: 10.1002/jcp.28369
Popis: Advanced glycation end products (AGE) and angiotensin II were closely correlated with the progression of diabetic nephopathy (DN). Nitric oxide (NO) is a protective mediator of renal tubular hypertrophy in DN. Here, we examined the molecular mechanisms of angiotensin-converting enzyme inhibitor (ACEI) and NO signaling responsible for diminishing AGE-induced renal tubular hypertrophy. In human renal proximal tubular cells, AGE decreased NO production, inducible NOS activity, guanosine 3',5'-cyclic monophosphate (cGMP) synthesis, and cGMP-dependent protein kinase (PKG) activation. All theses effects of AGE were reversed by treatment with ACEIs (captopril and enalapril), the NO donor S-nitroso-N-acetylpenicillamine (SNAP), and the PKG activator 8-para-chlorophenylthio-cGMPs (8-pCPT-cGMPs). In addition, AGE-enhanced activation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) were clearly reduced by captopril, enalapril, SNAP, and 8-pCPT-cGMPs. The abilities of ACEIs and NO/PKG activation to inhibit AGE-induced hypertrophic growth were verified by the observation that captopril, enalapril, SNAP, and 8-pCPT-cGMPs decreased protein levels of fibronectin, p21 Waf1/Cip1 , and receptor for AGE. The results of the present study suggest that ACEIs significantly reduced AGE-increased ERK/JNK/p38 MAPK activation and renal tubular hypertrophy partly through enhancement of the NO/PKG pathway.
Databáze: OpenAIRE