Combining Discrete Equations Method and Upwind Downwind-Controlled Splitting for non-reacting and reacting two-fluid computations: Two dimensional case
Autor: | Alberto Beccantini, Kunkun Tang, Christophe Eric Corre |
---|---|
Přispěvatelé: | Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems (BACCHUS), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Applications en Thermo-hydraulique et Mécanique des Fluides (LATF), Service de Thermo-hydraulique et de Mécanique des Fluides (STMF), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Département de Modélisation des Systèmes et Structures (DM2S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire des Écoulements Géophysiques et Industriels [Grenoble] (LEGI), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
[PHYS.PHYS.PHYS-FLU-DYN]Physics [physics]/Physics [physics]/Fluid Dynamics [physics.flu-dyn]
Reactive Riemann problem General Computer Science Computation Two-fluid model Detonation Anti-diffusive scheme on unstructured meshes 010103 numerical & computational mathematics 01 natural sciences Control volume 010305 fluids & plasmas Upwind Downwind-Controlled Splitting [PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] Robustness (computer science) [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] 0103 physical sciences (Reactive) Discrete Equations Method Applied mathematics Baer-Nunziato model 0101 mathematics Non-conservative system Shock tube Compressible multifluid flows Air-R22 shock bubble interaction Combustion and flame propagation Deflagration to detonation transition Physics General Engineering Reactive interface Classical mechanics Multi-dimensional unstructured grid Deflagration Liquid-gas shock bubble interaction Diffuse Interface approach [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] |
Zdroj: | Computers and Fluids Computers and Fluids, Elsevier, 2014, 103, pp.132-155. ⟨10.1016/j.compfluid.2014.07.019⟩ Computers and Fluids, 2014, 103, pp.132-155. ⟨10.1016/j.compfluid.2014.07.019⟩ |
ISSN: | 0045-7930 |
DOI: | 10.1016/j.compfluid.2014.07.019⟩ |
Popis: | International audience; This work deals with impermeable and permeable interfaces and the design of numerical strategies allowing multi-dimensional propagation of these interfaces on general unstructured grids. The numerical context is the (Reactive) Discrete Equations Method (DEM/RDEM) for the Baer-Nunziato type non-equilibrium multiphase model allowing a diffused interface, and meanwhile preserving the global conservation, which is of fundamental importance for studying long term combustion phenomena in large-scale geometries. Another advantage of RDEM for combustion lies in its ability to compute both deflagration and detonation, provided an appropriate reactive Riemann solver is inserted within the method. The present paper is a sequel to the recent publication (Tang et al., 2014) where an anti-diffusive approach and an original Upwind Downwind-Controlled Splitting method (UDCS) were combined with the 1D formulation of the DEM and RDEM. The method successfully developed in 1D for computing inert interfaces (e.g. impermeable water gas shock tube problem) and flame interfaces (e.g. Chapman-Jouguet deflagration and strong detonation wave) with excellent robustness and accuracy properties is extended here to two dimensional problems. The proposed low- and anti-diffusive versions of the multi-D UDCS strategy form an original contribution to the modeling of multifluid flows on unstructured grids. This multi-D extension relies on a general derivation of the Downwind Factors involved in the formulation of UDCS. In particular, the proposed UDCS anti-diffusive algorithm represents a new alternative to the "Extended-Vofire" solver (Faucher and Kokh, 2013) for unstructured meshes. Numerical experiments performed for non-reacting gas-gas and liquid-gas shock bubble interactions as well as for a model combustion problem demonstrate the combination of DEM/RDEM with UDCS yields excellent robustness/accuracy properties. Some remaining issues linked to the modeling of flame propagation in multi-dimensional cases are eventually discussed. |
Databáze: | OpenAIRE |
Externí odkaz: |