Numerical experiment to estimate the validity of negative ion diagnostic using photo-detachment combined with Langmuir probing

Autor: N. Oudini, A. Bendib, Albert R. Ellingboe, Nishant Sirse, Francesco Taccogna, Rafik Benallal, Ane Aanesland
Přispěvatelé: Laboratoire de Physique des Plasmas (LPP), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2015
Předmět:
Zdroj: Physics of Plasmas
Physics of Plasmas, American Institute of Physics, 2015, 22 (7), pp.073509. ⟨10.1063/1.4926826⟩
Physics of Plasmas, 2015, 22 (7), pp.073509. ⟨10.1063/1.4926826⟩
ISSN: 1089-7674
1070-664X
Popis: International audience; This paper presents a critical assessment of the theory of photo-detachment diagnostic method used to probe the negative ion density and electronegativity α = n-/ne. In this method, a laser pulse is used to photo-detach all negative ions located within the electropositive channel (laser spot region). The negative ion density is estimated based on the assumption that the increase of the current collected by an electrostatic probe biased positively to the plasma is a result of only the creation of photo-detached electrons. In parallel, the background electron density and temperature are considered as constants during this diagnostics. While the numerical experiments performed here show that the background electron density and temperature increase due to the formation of an electrostatic potential barrier around the electropositive channel. The time scale of potential barrier rise is about 2 ns, which is comparable to the time required to completely photo-detach the negative ions in the electropositive channel (∼3 ns). We find that neglecting the effect of the potential barrier on the background plasma leads to an erroneous determination of the negative ion density. Moreover, the background electron velocity distribution function within the electropositive channel is not Maxwellian. This is due to the acceleration of these electrons through the electrostatic potential barrier. In this work, the validity of the photo-detachment diagnostic assumptions is questioned and our results illustrate the weakness of these assumptions.
Databáze: OpenAIRE